Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Med (Lausanne) ; 9: 888408, 2022.
Article in English | MEDLINE | ID: covidwho-2065554

ABSTRACT

Background: Omicron, a new variant of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2), was first detected in November 2021. This was believed to be highly transmissible and was reported to evade immunity. As a result, an urgent need was felt to screen all positive samples so as to rapidly identify Omicron cases and isolate them to prevent the spread of infection. Genomic surveillance of SARS-CoV-2 was planned to correlate disease severity with the genomic profile. Methods: All the SARS-CoV-2 positive cases detected in the state of Rajasthan were sent to our Lab. Samples received from 24 November 2021 to 4 January 2022 were selected for Next-Generation Sequencing (NGS). Processing was done as per protocol on the Ion Torrent S5 System for 1,210 samples and bioinformatics analysis was done. Results: Among the 1,210 samples tested, 762 (62.9%) were Delta/Delta-like and other lineages, 291 (24%) were Omicron, and 157 (12.9%) were invalid or repeat samples. Within a month, the proportion of Delta and other variants was reversed, 6% Omicron became 81%, and Delta and other variants became 19%, initially all Omicron cases were seen in international travelers and their contacts but soon community transmission was seen. The majority of patients with Omicron were asymptomatic (56.7%) or had mild disease (33%), 9.2% had moderate symptoms, and two (0.7%) had severe disease requiring hospitalization, of which one (0.3%) died and the rest were (99.7%) recovered. History of vaccination was seen in 81.1%, of the previous infection in 43.2% of cases. Among the Omicron cases, BA.1 (62.8%) was the predominant lineage followed by BA.2 (23.7%) and B.1.529 (13.4%), rising trends were seen initially for BA.1 and later for BA.2 also. Although 8.9% of patients with Delta lineage during that period were hospitalized, 7.2% required oxygen, and 0.9% died. To conclude, the community spread of Omicron occurred in a short time and became the predominant circulating variant; BA.1 was the predominant lineage detected. Most of the cases with Omicron were asymptomatic or had mild disease, and the mortality rate was very low as compared to Delta and other lineages.

2.
J Microbiol Immunol Infect ; 2022 Jul 02.
Article in English | MEDLINE | ID: covidwho-1914641

ABSTRACT

BACKGROUND: During October 2020, Delta variant was detected for the first time in India and rampantly spread across the globe. It also led to second wave of pandemic in India which affected millions of people. However, there is limited information pertaining to the SARS-CoV-2 strain infecting the children in India. METHODS: Here, we assessed the SARS-CoV-2 lineages circulating in the pediatric population of India during the second wave of the pandemic. Clinical and demographic details linked with the nasopharyngeal/oropharyngeal swabs (NPS/OPS) collected from SARS-CoV-2 cases (n = 583) aged 0-18 year and tested positive by real-time RT-PCR were retrieved from March to June 2021. RESULTS: Symptoms were reported among 37.2% of patients and 14.8% reported to be hospitalized. The E gene CT value had significant statistical difference at the point of sample collection when compared to that observed in the sequencing laboratory. Out of these 512 sequences 372 were VOCs, 51 were VOIs. Most common lineages observed were Delta, followed by Kappa, Alpha and B.1.36, seen in 65.82%, 9.96%, 6.83% and 4.68%, respectively in the study population. CONCLUSION: Overall, it was observed that Delta strain was the leading cause of SARS-CoV-2 infection in Indian children during the second wave of the pandemic. We emphasize on the need of continuous genomic surveillance in SARS-CoV-2 infection even amongst children.

3.
Front Microbiol ; 13: 888195, 2022.
Article in English | MEDLINE | ID: covidwho-1911066

ABSTRACT

Background: During the second wave of the COVID-19 pandemic, outbreaks of Zika were reported from Kerala, Uttar Pradesh, and Maharashtra, India in 2021. The Dengue and Chikungunya negative samples were retrospectively screened to determine the presence of the Zika virus from different geographical regions of India. Methods: During May to October 2021, the clinical samples of 1475 patients, across 13 states and a union territory of India were screened and re-tested for Dengue, Chikungunya and Zika by CDC Trioplex Real time RT-PCR. The Zika rRTPCR positive samples were further screened with anti-Zika IgM and Plaque Reduction Neutralization Test. Next generation sequencing was used for further molecular characterization. Results: The positivity was observed for Zika (67), Dengue (121), and Chikungunya (10) amongst screened cases. The co-infections of Dengue/Chikungunya, Dengue/Zika, and Dengue/Chikungunya/Zika were also observed. All Zika cases were symptomatic with fever (84%) and rash (78%) as major presenting symptoms. Of them, four patients had respiratory distress, one presented with seizures, and one with suspected microcephaly at birth. The Asian Lineage of Zika and all four serotypes of Dengue were found in circulation. Conclusion: Our study indicates the spread of the Zika virus to several states of India and an urgent need to strengthen its surveillance.

6.
Front Med (Lausanne) ; 8: 781287, 2021.
Article in English | MEDLINE | ID: covidwho-1649347

ABSTRACT

Uttar Pradesh is the densely populated state of India and is the sixth highest COVID-19 affected state with 22,904 deaths recorded on November 12, 2021. Whole-genome sequencing (WGS) is being used as a potential approach to investigate genomic evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In this study, a total of 87 SARS-CoV-2 genomes-49 genomes from the first wave (March 2020 to February 2021) and 38 genomes from the second wave (March 2021 to July 2021) from Eastern Uttar Pradesh (E-UP) were sequenced and analyzed to understand its evolutionary pattern and variants against publicaly available sequences. The complete genome analysis of SARS-CoV-2 during the first wave in E-UP largely reported transmission of G, GR, and GH clades with specific mutations. In contrast, variants of concerns (VOCs) such as Delta (71.0%) followed by Delta AY.1 (21.05%) and Kappa (7.9%) lineages belong to G clade with prominent signature amino acids were introduced in the second wave. Signature substitution at positions S:L452R, S:P681R, and S:D614G were commonly detected in the Delta, Delta AY.1, and Kappa variants whereas S:T19R and S:T478K were confined to Delta and Delta AY.1 variants only. Vaccine breakthrough infections showed unique mutational changes at position S:D574Y in the case of the Delta variant, whereas position S:T95 was conserved among Kappa variants compared to the Wuhan isolate. During the transition from the first to second waves, a shift in the predominant clade from GH to G clade was observed. The identified spike protein mutations in the SARS-CoV-2 genome could be used as the potential target for vaccine and drug development to combat the effects of the COVID-19 disease.

7.
Viruses ; 13(9)2021 09 07.
Article in English | MEDLINE | ID: covidwho-1430972

ABSTRACT

From March to June 2021, India experienced a deadly second wave of COVID-19, with an increased number of post-vaccination breakthrough infections reported across the country. To understand the possible reason for these breakthroughs, we collected 677 clinical samples (throat swab/nasal swabs) of individuals from 17 states/Union Territories of the country who had received two doses (n = 592) and one dose (n = 85) of vaccines and tested positive for COVID-19. These cases were telephonically interviewed and clinical data were analyzed. A total of 511 SARS-CoV-2 genomes were recovered with genome coverage of higher than 98% from both groups. Analysis of both groups determined that 86.69% (n = 443) of them belonged to the Delta variant, along with Alpha, Kappa, Delta AY.1, and Delta AY.2. The Delta variant clustered into four distinct sub-lineages. Sub-lineage I had mutations in ORF1ab A1306S, P2046L, P2287S, V2930L, T3255I, T3446A, G5063S, P5401L, and A6319V, and in N G215C; Sub-lineage II had mutations in ORF1ab P309L, A3209V, V3718A, G5063S, P5401L, and ORF7a L116F; Sub-lineage III had mutations in ORF1ab A3209V, V3718A, T3750I, G5063S, and P5401L and in spike A222V; Sub-lineage IV had mutations in ORF1ab P309L, D2980N, and F3138S and spike K77T. This study indicates that majority of the breakthrough COVID-19 clinical cases were infected with the Delta variant, and only 9.8% cases required hospitalization, while fatality was observed in only 0.4% cases. This clearly suggests that the vaccination does provide reduction in hospital admission and mortality.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Genomics , SARS-CoV-2/genetics , Adult , COVID-19/diagnosis , Comorbidity , Disease Outbreaks , Female , Geography, Medical , High-Throughput Nucleotide Sequencing , Humans , India/epidemiology , Male , Middle Aged , Phylogeny , Public Health Surveillance , SARS-CoV-2/classification
8.
Viruses ; 13(5)2021 05 17.
Article in English | MEDLINE | ID: covidwho-1234829

ABSTRACT

The number of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) cases is increasing in India. This study looks upon the geographic distribution of the virus clades and variants circulating in different parts of India between January and August 2020. The NPS/OPS from representative positive cases from different states and union territories in India were collected every month through the VRDLs in the country and analyzed using next-generation sequencing. Epidemiological analysis of the 689 SARS-CoV-2 clinical samples revealed GH and GR to be the predominant clades circulating in different states in India. The northern part of India largely reported the 'GH' clade, whereas the southern part reported the 'GR', with a few exceptions. These sequences also revealed the presence of single independent mutations-E484Q and N440K-from Maharashtra (first observed in March 2020) and Southern Indian States (first observed in May 2020), respectively. Furthermore, this study indicates that the SARS-CoV-2 variant (VOC, VUI, variant of high consequence and double mutant) was not observed during the early phase of virus transmission (January-August). This increased number of variations observed within a short timeframe across the globe suggests virus evolution, which can be a step towards enhanced host adaptation.


Subject(s)
COVID-19/epidemiology , Phylogeography/methods , SARS-CoV-2/genetics , Adult , COVID-19/genetics , Female , Genome, Viral/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , India/epidemiology , Male , Middle Aged , Mutation/genetics , Phylogeny , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL